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Abstract- The MRTD scheme is applied to the
modeling of nonlinear circuits. Specifically, the im-
plementation of passive and active elements is dis-
cussed. The results are compared to those obtained
by use of the commercial CADs to indicate consider-
able savings in memory and computational time.

I Introduction

Recently, the use of multiresolution analysis for the
discretization of the time-domain Maxwell’s equa-
tions has led to the development of the Multireso-
lution Time Domain Technique (MRTD). This tech-
nique has been applied to linear as well as nonlinear
propagation problems and has demonstrated savings
in time and memory of two orders of magnitude. In
addition, the most important advantage of this new
technique is its capability to provide a very effective
way for space and time adaptive gridding without en-
countering the problems that the conventional FDTD
has to resolve.

In this paper, an algorithm to model nonlinear cir-
cuits using the MRTD scheme is proposed and ap-
plied to diode problems. As an example, the har-
monic analysis of a diode enclosed in a metallic shield
and terminated with lumped resistors is performed
and a simple stripline mixer circuit using the same
diode is analyzed.

II The MRTD scheme

To derive the MRTD scheme, the field components
are expanded in a series of cubic spline Battle-

Lemarie [1, 2] scaling and wavelet functions in space

and pulse functions in time. The MRTD equations
are derived by applying the Method of Moments to
the Maxwell’s equations after inserting the field ex-

pansions.

For open structures, the perfectly matched layer
(PML) technique can be applied by assuming that
the conductivity is given in terms of scaling and
wavelet functions instead of pulse functions with re-
spect to space [3]. The MRTD mesh is terminated
by a perfect electric conductor (PEC) at the end
of the PML region. Unlike the FDTD, where the
consistency with the image theory is implicit in the
application of the boundary conditions, the entire-
domain nature of the wavelet and scaling functions
requires an explicit use of the boundary conditions.
In particular, image theory has to be applied for the
evaluation of the field component coefficients in the
vicinity of Perfect Electric and Magnetic Walls. Due
to the nature of the Battle-Lemarie expansion func-
tions, the total field is a summation of the contri-
butions from the non-localized scaling and wavelet

functions.

III Lumped Elements

Similarly to LE-FDTD technique [4], the basis of
the algorithm is given by a particular interpreta-
tion of the current density term contained in the
Curl(H) Maxwell’s equation. Let’s assume for the
rest of the discussion that all the lumped elements

are z-oriented.

OE,
ot

e =5 (Vx H)+J? (1)
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The current term can be considered as the superposi-
tion of two separate terms, one coming from the finite
conductivity of the medium JZ? and the other com-
ing from the presence of a lumped element J;,. Eq.(1)
leads to the following general updating expression for
the E-field S-MRTD (Scaling-functions-based) coef-
ficients:

¢z _ ¢z
k+1El,m7n+% k El,m7n+%

€ =

At

2-(Vx H)
k3 e

where an ideal dielectric medium with ¢ = 0 has been
assumed. The discretization of the last term can be
obtained by expressing the constitutive relationship
of the related device in terms of electric field and

current density (instead of V-I relation as usual).

Since the field components are expanded in pulses in
the time-domain, the time discretization of the J-E
relation of the lumped devices is straightforward and
similar to FDTD.

III.1 Resistor

Assuming that the resistor is z-oriented and a pos-
itive voltage (with respect to the z-axis) is applied,

we have:
V,=-AzE,, I,=J;,AzAy

Since the current flow due to a positive voltage is
negative with respect to the z-axis, Ohm’s Law can
be written in the following form:
AzE,
RAzAy

By discretizing equations 1 and 2 accordingly to the

Jiu = (2)

S-MRTD scheme and assuming that no current den-
sity is supported by the medium we obtain:

B
k+1El¢,)7zn7n+% - C kEld,):anr% +
1
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1 m+8
. oz
~ Gay 2 el
j=m-—9
where
Bt __ 8% o_c, Az
At 2RAzAy At = 2RAzAy

III.2 Capacitor
The I-V Law of the capacitor is:

1) 0

Expanding the E- and H- components in scaling func-
tions in space and pulses in time and applying the
Moments Method, the capacitor can be described by
¢z — ¢z
b By = kB T
1 L8
; oy
* BAz > ey HYy s —
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where the coefficient B is given by:

Az
€+CAsz

At

II1.3

The constitutive relation of the inductor is:

=1 / V(t)dt

Inductor

Following the same procedure described for the re-

sistor and the capacitor we obtain:

C B¢
k+1Equfn,n+% = Z kEqufn,n-t-% o Z Z iEld,)rzn,n—i-% +
Lo
T AAs i;g“(l)k+%Hz+%,m,n+% -
1 m+8 ' ou
- A_ij:%zga(])kJr%Hz,jJr%,m%

where the coefficients A, B, C' are given by:

A—i-l- Az At AzAt €
At 2LAzAy’

T 2LAzAy T At

III.4 Diode with Junction and Diffu-

sion Capacitances
According to the model adopted in [5], the equivalent
circuit of the diode includes both the non linear junc-
tion and diffusion capacitances (Cq;(Vy) and C;(Vy))
and the total current can be expressed as:

I; = Ij +[cdi +ch
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with .
I =1 (enK—TVd - 1) :
dV, dV,
Ic,, = Cdi(Vd)—dtd o ey = CJ’(Vd)—dtd

In the above equations K is the Boltzmann constant,
T is the absolute temperature, Iy is the inverse satu-
ration current of the diode and 7 is the ideality factor
that will be omitted in the rest of the discussion. The
two non linear capacitances, in turn, are modeled by
the following equations:

Cai(Va) = TdIOL (G%Vd -1

KT
Va\™ " .
Cj(Va) = C5(0) (1 - %> if Va> Fego
v =S ()T i< R
2 bo

where F., F5, F3 are suitable coefficients, m is the
doping profile coefficient (usually 0.5 for abrupt junc-
tion), ¢y is the built-in voltage and C;(0) is the static
capacitance at Vz; = 0.

The current equations are discretized in a similar way
with the other lumped elements and two E-field tran-
scedental equations are derived for V; < F.¢y and
Vi > F.¢g. These equations can be solved in an iter-

ative procedure (e.g. Newton-Raphson algorithm).

IV Applications of Nonlinear
MRTD

The modeled Schottky GaAs diode has the follow-
ing parameter values: I = 5.e — 11 A, n = 1.25,
R, =13Q, C;(0) = 29pF, 74 =0, m = 0.5, F. = .5
For the analysis of the testing structure of Fig.(1),
we have set up a mesh of 8 x 30 x 6 cells with a cell
size equal to 30 x 60 x 30 pm (60 wm is A\/10 at
about 135 GHz). The same structure has been also
analyzed, for comparison, with FDTD method. This
analysis has been performed by adopting two differ-
ent meshes: the same mesh described before and a
doubled mesh with the dimension: 16 x 60 x 12 and
A/10 at about 270 GHz. The structure has been ex-
cited at the center with an impressed current source
window. A sine-wave with a frequency of 45 GHz
has been used, while a probe at the center of the

structure has been considered. Figures (2),(3) and
(4) show the results obtained with the coarse FDTD,
the finer FDTD, and the MRTD respectively. The
MRTD simulation has adopted the same mesh used
in the coarsest FDTD analysis. The good agreement
between the FDTD simulation with the fine mesh
and the MRTD one, together with the fairly different
results obtained with the coarse mesh FDTD analy-
sis, put at the evidence the capability of the MRTD
to better predict the frequency behavior of this non
linear circuit. In particular, it is evident that with
a coarse mesh, MRTD, in contrast to FDTD, can
detect the harmonic null due to the location of the
probe in the middle of the structure (in this posi-
tion, in theory, no even harmonic mode should be
detected).

Figure (5) shows the geometry of a stripline single-
ended mixer, which is analyzed by use of MRTD. The
used Schottky diode has the characteristics described
above and is zero biased for simplicity. The LO and
RF excitation signals have frequencies 43 GHz and
45 GHz and powers 20 dBm and -20 dBm respec-
tively. The left (short-circuited) stub with length
900 pum is used as an IF signal block and the right
(open-circuited) stub with length 1640 um blocks
the LO/RF signals at the output section. For this
configuration, MRTD gives a conversion loss of -8.1
dB. LIBRA, a commercial EM simulator, calculates
the conversion loss at -8.8 dB. In addition, (Table 1)
shows that the relative output power of the harmon-
ics gets similar values for MRTD and LIBRA simu-
lations. These results emphasize the inherent capa-
bility of MRTD to describe efficiently the nonlinear
elements, which create a discrete but infinite spec-
trum. Moreover, the MRTD allows for a time adap-
tive scheme which offers significant computational
profit due to the iterative algorithm for the solution
of the nonlinear equations. It has to be pointed out
that LIBRA can give reliable results only for qua-
sistatic geometries such as Figure (5). On the con-
trary, MRTD can simulate efficiently structures with
multimodal propagation without the huge memory
requirements of the conventional FDTD schemes.
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Table 1: Harmonics Power Distribution [dBm)]
Freq [GHz] 2 41 43 45 88

LIBRA -28.8 | -56.1 | -33.2 | -40.1 | -36.3

MRTD -28.1 | -54.7 | -31.4 | -38.2 | -34.7

V  Conclusion

An algorithm for the modeling of lumped elements
with the MRTD scheme based on the Battle-Lemarie
basis has been proposed and has been applied to

normalized spectrum [dB]

the numerical analysis of a diode problem. The fre- B0 o

frequency [GHz]

quency spectrum has been calculated and verified by
comparison to reference data. In comparison to Yee’s Figure 2: FDTD coarse mesh.
conventional FDTD scheme, the proposed scheme of-

fers memory savings by a factor of 2-6 per dimension 0

maintaining a similar accuracy. 100
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